The Decomposition of Azibenzil, PhC(N₂)COPh, by Catalytic Amounts of Carbanions or of Sodium Borohydride: Evidence for a Hydride-ion Transfer Chain Reaction ## Donald Bethell and Linda J. McDowall The Robert Robinson Laboratories, The University of Liverpool, P.O. Box 147, Liverpool L69 3BX, U.K. Evidence is presented that the conversion of azibenzil, PhC(N₂)COPh, into benzil azine induced by catalytic quantities of carbanions or of NaBH₄ in Me₂SO or MeCN involves a novel hydride-ion transfer chain mechanism. Cyclic voltammetric studies of the cathodic reduction of azibenzil, PhC(N₂)COPh (ABN₂), in MeCN-Et₄NBF₄ have shown that the initially formed anion radical ABN₂ ·- undergoes a rapid first order reaction not involving the solvent and gives rise to the carbanion PhCHCOPh (ABH-) as the only detectable product. However, constant current electrolysis of ABN₂ (0.01-0.05 M) at a Pt cathode at low current densities yielded the carbanion (estimated as PhCH₂COPh) and benzil azine PhCOC(Ph)=NN=C(Ph)COPh (AB=NN=BA) in comparable yields in a process that showed the characteristics of an electrochemically induced chain process.² Addition of phenyl t-butyl nitrone had no effect on the chain process once initiated, suggesting a non-radical pathway, and indeed decomposition of ABN₂ can be induced by catalytic quantities of ABH- or other carbanions generated by essentially complete conversion of the parent carbon acid using Et₄NOH in Me₂SO containing 2% (v/v) H₂O under an atmosphere of purified nitrogen. Thus, ABN₂ (0.05 M) in the presence of ABH_2 (5 × 10⁻³ M) and Et_4NOH (0.01 M) yielded the azine in 95% yield with total recovery of ABH₂. Under the same conditions a series of 2-substituted fluorenes XFlH₂ gave AB=NN=BA (74—81% yield), ABH₂ (8—10%) together with the mixed azine XFl=NN=BA (6—10%). Carbon acids having only one acidic hydrogen (e.g., 9-phenylfluorene, phenylacetylene) also promoted the decomposition but reactions were in general much slower and incomplete. In the absence of a carbon acid, ABN₂ and Et₄NOH led to nitrogen evolution which was quite rapid initially but ceased when a roughly stoicheiometric amount had been liberated; reaction products were azine, benzoin, and diphenylacetate ion as previously reported.3 The kinetics of the reaction between ABH⁻ and ABN₂ were followed using a pressure transducer to monitor the evolution of nitrogen. With a small excess of Et₄NOH over ABH₂, the pressure-time curve was sigmoid, showing a short induction period followed by a rapid pressure increase, the rate decaying according to a first-order kinetic law. At higher hydroxide excesses the induction period was overlaid by the nitrogen evolution resulting from the stoicheiometric reaction. Based on the pressure-time curve after ca. 20% decomposition, it was established that the rate of nitrogen evolution was given by $v = k_{ABH_2}[ABN_2][ABH_2]$ independent of the excess (2- to 5-fold) of Et₄NOH over ABH₂. Using Et₄NOD with ABD₂ in D₂O₋(CD₃)₂SO, nitrogen evolution was very much slower and reaction of the diazoketone was incomplete. Since the stoicheiometric reaction of DO- with ABN2 appears to be only slightly accelerated compared with that of HO-, a substantial kinetic isotope effect on the carbanion induced reaction is indicated. We believe that the mechanism in Scheme 1 is consistent with our observations. Hydride-ion transfer from the adduct of ABN_2 and the carbanion to a further ABN_2 molecule is the slow step in each cycle of the mechanism. In this mechanism hydride ion functions in an analogous fashion to the proton in acid-catalysed reactions. To the best of our knowledge this constitutes the first demonstration of such hydride-ion transfer catalysis in organic systems. Support for our interpretation comes from our observation that ABN₂ undergoes conversion into azine (plus a little hydrazone, ABNNH₂) by treatment with a catalytic amount of NaBH₄ in dry Me₂SO or 2% aqueous MeCN. Pressure-time curves for such reactions are again sigmoid and the rate of nitrogen evolution in the later stages of reaction fits the equation $v = k_{\text{NaBH}_4}[\text{ABN}_2][\text{NaBH}_4]$ with k_{NaBH_4} ca. = $0.6k_{\text{ABH}_2}$. We believe that we are observing the same chain-propagating reaction, NaBH₄ generating ABH⁻ by hydride transfer to the diazo-carbon of ABN₂ followed by loss of nitrogen. The rate discrepancy is attributable to different Scheme 1 efficiencies of generating ABH⁻ in the two systems. By using NaBD₄ (98% D) in $(CD_3)_2SO$, the observed value of k_{NaBH_4}/k_{NaBD_4} was 2.1 at 30 °C indicating a value of about 2.3 after correction for isotopic purity. Similar experiments on 9-diazofluorene (FlN₂) are underway, but the situation there seems more complex than for ABN₂. FlN₂ is converted by NaBH₄ into its azine (plus hydrazone) in high yield and the reaction shows a kinetic form similar to the ABN₂ reaction, but with an apparent isotope effect of only 1.3. However, Et₄NOH in Me₂SO-H₂O or MeCN-H₂O gives a more rapid reaction forming azine quantitatively and showing a similar small kinetic isotope effect in a perdeuteriated solvent. Added carbon acids have no detectable effect on the rate or products.⁴ Since reaction mixtures exhibit strong (though unresolvable) e.s.r. signals, we incline to the view that, in the presence of HO⁻, FlN₂ decomposes by an ion-radical chain mechanism (ETC catalysis)⁵ analogous to that induced electrochemically⁶ for which the apparent solvent isotope effect on the propagation step is 1.2.2 The mechanism of initiation of this chain reaction is still under investigation. Received, 25th July 1984; Com. 1089 ## References - 1 D. Bethell, L. J. McDowall, and V. D. Parker, J. Chem. Soc., Chem. Commun., 1984, 308. - 2 D. Bethell, L. J. McDowall, and V. D. Parker, J. Chem. Soc., Perkin Trans. 2, 1984, 1531. - 3 P. Yates and B. L. Shapiro, J. Am. Chem. Soc., 1959, 81, 242. - 4 See, however, J. Bakke, D. Bethell, P. J. Galsworthy, K. L. Handoo, and D. Jackson, J. Chem. Soc., Chem. Commun., 1979, 890 - M. Chanon and M. L. Tobe, *Angew. Chem.*, *Int. Ed. Engl.*, 1982, 21, 1. - 6 V. D. Parker and D. Bethell, Acta Chem. Scand., Ser. B, 1981, 35, 69; D. Bethell, P. J. Galsworthy, K. L. Handoo, and V. D. Parker, J. Chem. Soc., Chem. Commun., 1980, 534; see also R. N. McDonald, K. J. Borhani, and M. D. Hawley, J. Am. Chem. Soc., 1978, 100, 995.